Unsupervised Learning for Computational Phenotyping

نویسنده

  • Chris Hodapp
چکیده

With large volumes of health care data comes the research area of computational phenotyping, making use of techniques such as machine learning to describe illnesses and other clinical concepts from the data itself. The “traditional” approach of using supervised learning relies on a domain expert, and has two main limitations: requiring skilled humans to supply correct labels limits its scalability and accuracy, and relying on existing clinical descriptions limits the sorts of patterns that can be found. For instance, it may fail to acknowledge that a disease treated as a single condition may really have several subtypes with different phenotypes, as seems to be the case with asthma and heart disease. Some recent papers cite successes instead using unsupervised learning. This shows great potential for finding patterns in Electronic Health Records that would otherwise be hidden and that can lead to greater understanding of conditions and treatments. This work implements a method derived strongly from Lasko et al., but implements it in Apache Spark and Python and generalizes it to laboratory time-series data in MIMIC-III. It is released as an open-source tool for exploration, analysis, and visualization, available at: https://github.com/Hodapp87/mimic3 phenotyping.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Nonparametric Collaborative Topic Poisson Factorization for Electronic Health Records-Based Phenotyping

Phenotyping with electronic health records (EHR) has received much attention in recent years because the phenotyping opens a new way to discover clinically meaningful insights, such as disease progression and disease subtypes without human supervisions. In spite of its potential benefits, the complex nature of EHR often requires more sophisticated methodologies compared with traditional methods...

متن کامل

Towards Patient-Driven Phenotyping and Similarity for Precision Medicine

Clinical phenotyping provides important insight into the manifestation and outcome of rare and complex diseases. Traditional phenotyping techniques often require multiple iterations of refinement with a domain expert, lack interoperability, and have limited reproducibility. In comparison, patient similarity-based techniques derive personalized patient risk models that are highly accurate, even ...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.08425  شماره 

صفحات  -

تاریخ انتشار 2016